DOI: 10.1002/adsc.200600308

Construction of Highly-Functionalized Cyclopentanes from Silyl Enol Ethers and Activated Cyclopropanes by [3+2] Cycloaddition Catalyzed by Triflic Imide

Kiyosei Takasu,^{a,*} Satoshi Nagao,^a and Masataka Ihara^{a,b,*}

^a Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan Phone: (+81)-22-795-6878; Fax: (+81)-22-795-6878; e-mail: kay-t@mail.pharm.tohoku.ac.jp

b Present address: Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Received: June 27, 2006; Accepted: August 29, 2006

Supporting information for this article is available on the WWW under http://asc.wiley-vch.de/home/.

Abstract: [3+2] Cycloadditions of silyl enol ethers with donor-acceptor (D-A) cyclopropanes, such as 2-alkoxycyclopropanecarboxylates and 2-(p-methoxyphenyl)cyclopropyl phenyl ketone, proceed in the presence of a catalytic amount of triflic imide (Tf₂NH) to give functionalized cyclopentanes in high yield. The catalytic process allows promotion of the cycloaddition of substrates incorporating Lewis basic functions, such as ether and carbamate moieties. Moreover, multicomponent [4+2]-[3+2] cascade cycloadditions of α , β -unsaturated carbonyl compounds, 2-siloxydienes and D-A cyclopropanes to form highly-functionalized bicyclo[4.3.0]nonanes have been demonstrated.

Keywords: cycloaddition; cyclopentanes; D-A cyclopropanes; multicomponent reactions; triflic imide; zwitterions

Cycloadditions are one of the most important reactions for the preparation of cyclic substances. In order to construct five-membered rings, several strategies, such as [3+2], [4+1], and [2+2+1] cycloadditions, are available. Among the methodologies, many efforts have been focused on [3+2] dipolar cycloadditions utilizing nitrones, azides, diazoalkanes to synthesize 5membered heterocycles.^[1] Donor-acceptor (D-A) substituted cyclopropanes^[2,3] are utilized as equivalents of three carbon 1,3-dipole unit for the formation of 5membered carbocyles. Kuwajima and his co-workers reported that [3+2] cycloadditions of D-A cyclopropanes, such as 2-alkoxy- and 2-phenylthiocyclopropyl carbonyl compounds, with silyl enol ethers were promoted by SnCl₄^[4] and Me₂AlCl,^[5] respectively, to furnish multi-functionalized cyclopentanes. Although several such [3+2] cycloadditions have been documented using various substances after their findings, [2,6,7] most of them require a stoichiometric amount of Lewis acid, except for a few exceptions. [4,8] As a part of our ongoing research program on catalytic [2+2] cycloaddition of silyl enol ethers to construct highly-substituted cyclobutanes, [9] we recently found that triflic imide $(Tf_2NH)^{[10]}$ efficiently catalyzes the [2+2] cycloaddition. [11] We have demonstrated that silyl triflic imide (R_3SiNTf_2) , [12] which is generated *in situ* from Tf_2NH with silyl enol ethers, acts as the actual catalyst. We expected that Tf_2NH would be a new possibility for good catalysis of [3+2] cycloadditions of silyl enol ethers. We report herein [3+2] cycloadditions catalyzed by Tf_2NH , and its application toward a multi-component reaction, namely the [4+2]-[3+2] cascade cycloaddition, to afford the bicyclo[4.3.0]nonane framework.

At the outset of this study, the [3+2] cycloaddition of TBS enol ether (1a) with *trans*-ethyl 2-butoxycyclopropanecarboxylate (*trans*-2a)^[4] as D-A cyclopropane was examined using several fluorinated Brønsted acid catalysts (Table 1, entries 1–4). Treatment of *trans*-2a with TBS enol ether 1a in the presence of Tf₂NH (1 mol%) in CH₂Cl₂ at -78°C for 2 h afforded the highly-substituted cyclopentane product 3a in 69% yield as a mixture of four diastereomers (entry 1). In contrast, the reaction using a stoichiometric amount of Tf₂NH resulted in only a trace yield of 3a and decomposition of 1a (entry 2). Imide 4, which is the cyclic analogue of Tf₂NH, also acts as a good catalyst (entry 4), whereas triflic acid (TfOH) does not promote the cycloaddition (entry 3).

As shown in Table 1 (entries 5–9), [3+2] cycloaddition of 1 with trans-2a proceeded smoothly by addition of a catalytic amount (1 mol%) of Tf₂NH to afford highly-functionalized cyclopentanes 3 in good yield. In contrast, the reaction of TMS enol ether 1b afforded 3b in 9% yield, along with desilylated product in 60% yield (entry 5). We have examined the

2376

Table 1. [3+2] Cycloaddition of trans-ethyl 2-butoxycyclopropanecarboxylate) (trans-2a) with silyl enol ethers 1. [a]

Entry	$1 (R^1, R^2, [Si])$	Catalyst	Product	Yield [%] ^[c]
1	1a (-(CH ₂) ₄ -, TBS)	Tf ₂ NH	3a	69 ^[d]
2	1a 2/4 /	$Tf_2NH^{[b]}$	3a	trace
3	1a	TfOH	3a	0
4	1a	4	3a	$65^{[d]}$
5	1b $(-(CH_2)_4-, TMS)$	Tf_2NH	3b	9 ^[d,e]
6	$1c (-(CH_2)_4-, TIPS)$	Tf_2NH	3c	$70^{[d]}$
7	1d $(-(CH_2)_4-, TBDPS)$	Tf_2NH	3d	$73^{[f]}$
8	1e $(-(CH_2)_5$ -, TBS)	Tf_2NH	3e	$67^{[d]}$
9	1f (Ph, H, TBS)	Tf_2NH	3f	64 ^[d]

- al Conditions: 1 (1.2 equivs.), trans-2a (1 equiv.), catalyst (1.0 mol%), CH₂Cl₂ (0.1–0.2 M for trans-2a), -78 °C, 2 h.
- [b] 100 mol % of catalyst was used.
- [c] Isolated yields after SiO₂ column chromatography and/or GPC.
- [d] Mixture of four diastereomers (detected by ¹H NMR).
- [e] Desilylated product was obtained in 60% yield.
- [f] Mixture of three diastereomers (detected by ¹H NMR).

possibility of [3+2] cycloaddition of **1a** with other cyclopropanes **2b-e** (Figure 1), however no reaction occurred under the same conditions. The results denote that both electron-donating and -withdrawing groups on cyclopropanes are necessary for promotion of the cycloaddition reaction.

Figure 1. Cyclopropanes tested in our Tf_2NH -catalyzed [3+2] cycloaddition.

Next, we examined the [3+2] cycloaddition of silyl enol ethers **1** with *trans*-2-(*p*-methoxyphenyl)cyclopropyl phenyl ketone (*trans*-**5**)^[15] as D-A cyclopropane. The *p*-methoxyphenyl group corresponds to a weaker electron-donating group, as opposed to the alkoxyl and alkylthio groups. As far as we know, there are limited examples for the [3+2] cycloaddition of D-A cyclopropanes possessing electron-donating aryl substituents. Although the reactivity of **5** is lower than that of butoxycyclopropane **2a**, Tf₂NH (2-6 mol%) could promote the desired cycloaddition in a couple of hours to give multi-substituted cyclopentanes **6** in moderate to high yield (Table 2). The reaction of TBS enol ether **1a** with *trans*-**5** afforded the substituted cyclopentane **6a** in 84% yield as a mixture

of four diastereomers (Table 2, entry 1),^[13] whereas only two diastereomers of **6d** were obtained in the reaction of TBDPS enol ether **1d** under the similar conditions (entry 2).^[5] Diastereomeric ratios are almost 1:1 in the reaction of cyclic TBDPS enol ethers **1d**, **g**, **h** with *trans*-**5** (entries 2–4), and the relative structures of both diastereomers **6h** have been determined by NOESY experiments (Figure 2). When the stereoisomeric cyclopropane *cis*-**5** was reacted with **1h** in the presence of Tf₂NH, the same product **6h** (dr=1:1) was obtained in 84% yield (entry 5). On the other hand, acyclic TBDPS enol ether **1i** afforded **6i** as a 4:1 mixture of diastereomers (entry 6).

As a further synthetic demonstration, the construction of heterocyclic substances with Tf₂NH was examined (Scheme 1). Reaction of silyl enol ether **1j**, which was prepared from 4-tetrahydropyranone, with D-A cyclopropane *trans-***5** in the presence of Tf₂NH afforded oxabicyclo[4.3.0]nonane **6j** as a mixture of four diastereomers in 71% yield. Silyl enol ether **1k**^[17] containing a carbamate function also furnished azabicyclic compound **6k** in moderate yield. Moreover, the D-A cyclopropane-fused tetrahydropyran ring species **7**^[18] promotes the [3+2] cycloaddition to furnish tricyclic compound **8** as a diastereomeric mixture. These results indicate that several Lewis basic functions in the substrate are compatible with Tf₂NH catalyst in the [3+2] cycloaddition.

We have further assessed multi-component reactions (MCR) involving a sequential Diels-Alder reaction and a [3+2] cycloaddition ([4+2]-[3+2] cascade

Table 2. [3+2] Cycloaddition of 2-(p-methoxyphenyl)cyclopropyl phenyl ketone (5) with silyl enol ethers 1. [a]

Entry	1 (R ¹ , R ² , R ³ , [Si])	Product	Yield [%] ^[e]
1	1a (-(CH ₂) ₄ -, H, TBS)	6a	84 ^[f]
2	1d $(-(CH_2)_4-, H, TBDPS)$	6 d	$80^{[g]}$
3 ^[b]	$1g(-(CH_2)_3-, H, TBDPS)$	6g	74 ^[g]
4 ^[c]	1h (- $(CH_2)_4$ -, Me, TBDPS)	6 h	84 ^[g]
5 ^[d]	1h $(-(CH_2)_4$ -, Me, TBDPS)	6 h	94 ^[g]
$6^{[b]}$	1i (Ph, H, H, TBDPS)	6i	$62^{[g]}$

- [a] Conditions: 1 (1.2 equivs.), trans-5 (1 equiv.), catalyst (2.0 mol %), CH₂Cl₂ (0.13 M for trans-5), -78 °C, 2 h.
- ^[b] Reaction was conducted at -40 °C.
- [c] 6 mol % of catalyst was used.
- [d] cis-5 was used instead of trans-5, and 4 mol% of catalyst was used.
- [e] Isolated yields after SiO₂ column chromatography and/or GPC.
- [f] Mixture of four diastereomers (detected by ¹H NMR).
- [g] Mixture of two diastereomers (detected by ¹H NMR).

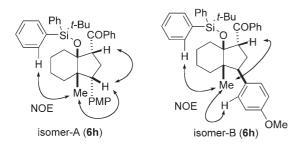


Figure 2. Selected NOEs of both diastereomers of 6h.

CH₂Cl₂,

8 to –40 °C, 5 h

[a] As a mixture of several diastereomers.

Scheme 1.

cycloaddition) to assemble simple materials into polycyclic compounds.^[19] When a mixture of acrylate 9, 2siloxydiene 10 and D-A cyclopropane trans-5 was treated at once with Tf₂NH, the reaction resulted in the formation of a messy mixture. On the other hand, by sequential addition of the substrates as an alternative method, the desired MCR product 12 was obtained in moderate yield. Namely, Tf₂NH (1 mol%) was treated with a mixture of 9 and 10, followed by addition of trans-5 and additional Tf₂NH (2 mol%), to afford bicyclo[4.3.0]nonane 12 as a mixture of diastereomers (Scheme 2). The treatment of 2-cyclohexenone (13) with 10 and then with trans-5 in the presence of Tf₂NH (1 + 2 mol%) afforded tricyclic compounds 15 and 16 in 18% and 15% yield, respectively, by means of sequential addition protocol.

A plausible mechanism of the catalytic [3+2] cycloaddition reaction is outlined in Figure 3. As mentioned above, silyl triflic imide (R₃SiNTf₂) is first produced from silyl enol ether and Tf₂NH. This Lewis acid then activates the D-A cyclopropane into a ringopening 1,3-dipole, whose oxonium moiety is attacked by the nucleophilic enol silvl ether to form a zwitterionic intermediate. Then, intramolecular addition of the enolate anion in this intermediate to the oxonium cation takes place to afford the cyclopentane product. The speculation that not Tf₂NH but R₃SiNTf₂ serves as a real catalyst for the cycloaddition is consistent with the observation that the chemical yield of cyclopenetane 3a varies inversely with the amount of Tf₂NH (Table 1, entries 1 and 2). The lack of stereospecificity observed in the reaction of both diastereo-

8 (47%)^[a]

[a] As a mixture of several diastereomers

Scheme 2.

$$\begin{bmatrix} a & O[Si] & Tf_2NH & a & O \\ b & c & + & [Si]NTf_2 \\ actual \ catalyst \end{bmatrix}$$

$$O[Si]NTf_2 & O[Si]NTf_2 \\ OEt & OBu \\ 1,3-dipole & CO_2Et \\ CO_2Et \\ CO_3U & CO_4Et \\ CO_3U & CO_5U \\ CO_5U & C$$

Figure 3. Plausible mechanism for Tf_2NH -catalyzed [3+2] cycloaddition.

mers *trans*- and *cis*-**5** (Table 2, entries 4 and 5) suggests formation of a short-lived 1,3-dipole intermediate by ring-opening of the D-A cyclopropane.^[4]

In summary, we observed that Tf₂NH serves as an efficient catalyst for [3+2] cycloaddition reactions of

silyl enol ethers with D-A cyclopropanes to give highly-functionalized cyclopentanes in high yields. Tf₂NH catalyst enables the promotion of the [3+2] cycloaddition of substrates incorporating Lewis basic functions, such as ether and carabamate moieties, to give heterocyclic products. Moreover, we have demonstrated the multicomponent [4+2]-[3+2] cycloaddition of three different substrates, such as α,β -unsaturated carbonyl compounds, 2-siloxydiene and D-A cyclopropane, to give a highly-substituted bicyclo-[4.3.0]nonane skeleton in one pot. Further investigation is now ongoing to improve the stereoselectivity in the [3+2] cycloaddition and the chemical yields in the multicomponent reactions.

Experimental Section

General Procedure for [3+2] Cycloaddition

To a solution of *trans-5* (1.0 equiv.) and silyl enol ether **1** (1.2 equivs.) in CH₂Cl₂ (0.13M for *trans-5*) Tf₂NH was added dropwise (2.0 mol%; 0.08M toluene solution) at $-78\,^{\circ}$ C. The reaction mixture was stirred at the same temperature for the appropriate time. The mixture was quenched with saturated aqueous NaHCO₃ solution, then diluted with Et₂O, and extracted with Et₂O three times. The combined organic layer was washed with brine, dried over Mg₂SO₄ and concentrated under vacuum. The residue was purified by GPC and/or SiO₂ column chromatography to give the desired cyclopentane **6**.

Typical Procedure for Multicomponent [4+2]-[3+2] Cycloaddition

To a solution of methyl acrylate (9; 18 µL, 0.20 mmol) and 2-siloxydiene **10** (67.4 mg, 0.21 mmol) in CH₂Cl₂ (2.0 mL) Tf₂NH was added dropwise (0.08M toluene solution; 25 μL, 2.0 µmol) at 0°C. The reaction mixture was stirred at the same temperature for 35 min (TLC check). To the mixture D-A cyclopropane trans-5 (49.7 mg, 0.20 mmol) and Tf₂NH (0.08 M toluene solution; 50 µL, 4.0 µmol) were added at 0°C, and stirred for 1 h at 0°C and for an additional 1 h at ambient temperature. The mixture was quenched with saturated aqueous NaHCO3 solution, then diluted with Et2O, and extracted with Et₂O three times. The combined organic layer was washed with brine, dried over Mg₂SO₄, and concentrated under vacuum. The residue was purified with SiO₂ column chromatography and then GPC to give the desired 12 as a mixture of diastereomers; yield: 46.4 mg (35%). The formation and purity of 12 was confirmed by elementary analysis.

Supporting information

Characterization data for new compounds are given in supporting information materials.

COMMUNICATIONS Kiyosei Takasu et al.

Acknowledgements

This work was supported in part by Uehara Memorial Foundation, the Mitsubishi Chemical Corporation Fund, and the MEXT, Japan.

References

- [1] W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon Press, Oxford, 1990, pp. 269–331.
- [2] a) H.-U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151–1196; b) M. Yu, B. L. Pagenkopf, Tetrahedron 2005, 61, 321–347.
- [3] As a leading example of intermolecular [3+2] cycloaddition of D-A cyclopropane to synthesize cyclopentanes, see: K. Saigo, S. Shimada, Y. Hashimoto, M. Hasegawa, *Chem. Lett.* **1990**, 1093–1096.
- [4] M. Komatusu, I. Suehiro, Y. Horiguchi, I. Kuwajima, *Synlett* **1991**, 771–773.
- [5] Y. Horiguchi, I. Suehiro, A. Sasaki, I. Kuwajima, *Tetrahedron Lett.* 1993, 34, 6077–6080.
- [6] Recent examples for [3+2] cycloaddition of D-A cyclopropanes to give cyclopentanes: a) V. K. Yadav, V. Sriramurthy, *Angew. Chem. Int. Ed.* 2004, 43, 2669–2671;
 b) V. K. Yadav, R. Balamurugan, *Org. Lett.* 2001, 3, 2717–2719;
 c) Y. Sugita, S. Yamadoi, H. Hosoya, I. Yokoe, *Chem. Pharm. Bull.* 2001, 49, 657–658.
- [7] Recent examples for [3+2] cycloaddition of D-A cyclopropanes to give heterocycles: a) M. Yu, B. L. Pagenkopf, J. Am. Chem. Soc. 2003, 125, 8122-8123; b) M. Yu, B. L. Pagenkopf, Org. Lett. 2004, 6, 1057-1059; c) P. D. Pohlhaus, J. S. Johnson, J. Am. Chem. Soc. 2005, 127, 16014-16015.
- [8] Y. Sugita, K. Kawai, H. Hosoya, I. Yokoe, *Heterocycles* 1999, 51, 2029–2033.

- [9] a) K. Takasu, M. Ueno, K. Inanaga, M. Ihara, J. Org. Chem. 2004, 69, 517-521; b) K. Takasu, S. Nagao, M. Ueno, M. Ihara, Tetrahedron 2004, 60, 2071-2078.
- [10] Recent reports for Tf₂NH-catalyzed reactions: a) M. B. Boxer, H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 48–49; b) R. F. Sweis, M. P. Schramm, S. A. Kozmin, J. Am. Chem. Soc. 2004, 126, 7442–7443; c) K. Ishihara, Y. Hiraiwa, H. Yamamoto, Synlett 2001, 1851–1854; d) J. Cossy, F. Lutz, V. Alauze, C. Meyer, Synlett 2002, 45–48.
- [11] a) K. Inanaga, K. Takasu, M. Ihara, J. Am. Chem. Soc. 2005, 127, 3668–3669; b) K. Takasu, N. Hosokawa, K. Inanaga, M. Ihara, Tetrahedron Lett. 2006, 47, 6053–6056.
- [12] B. Mathieu, L. Ghosez, Tetrahedron 2002, 58, 8219–8226.
- [13] Although isolation of each diastereomeric product was too difficult by SiO₂ column chromatography, several of them were separable by gel permeation chromatography (GPC).
- [14] S. Singh, D. D. DesMarteau, S. S. Zuberi, M. Witz, H. N. Huang, J. Am. Chem. Soc. 1987, 109, 7194–7196.
- [15] L. A. Yanovskaya, V. A. Dombrovskii, O. S. Chizhkov, B. M. Zolotarev, O. A. Subbotin, V. F. Kucherov, *Tetra-hedron* 1972, 28, 1565–1573.
- [16] a) I. S. Young, M. A. Kerr, Angew. Chem. Int. Ed. 2003, 42, 3023-3026; b) C. A. Carson, M. A. Kerr, J. Org. Chem. 2005, 70, 8242-8244.
- [17] D. S. Dodd, A. C. Oehlschlager, J. Org. Chem. 1992, 57, 2794–2803.
- [18] A. J. Anciaux, A. J. Hubert, A. F. Noels, N. Petiniot, P. Teyssie, J. Org. Chem. 1980, 45, 695-702.
- [19] K. Inanaga, K. Takasu, M. Ihara, J. Am. Chem. Soc. **2004**, 126, 1352–1353.